
Lecture 12 : Setup for the Central Limit Theorem

STAT205 Lecturer: Jim Pitman Scribe: Jing Lei <jinglei@statberkeley.edu>

This set of notes is a revision of the work of David S. Rosenberg and Nate Coehlo.

Abstract

See Durrett’s book section 2.4b for an equivalent formulation and a proof
using characteristic functions. That proof leans on the continuity theorem
for characteristic functions, (3.4) on page 99, which in turn relies on Helly’s
selection theorem (2.5) on page 88. The present approach, due to Lindeberg,
is more elementary in that it does not require these tools, but note that the
basic idea in both arguments is to estimate the expected value of a sum of
independent variables using a Taylor expansion with error bound.

12.1 Triangular Arrays

Roughly speaking, a sum of many small independent random variables will be approx-
imately normally distributed. To formulate such a limit theorem, we must consider a
sequence of sums of more and more, smaller and smaller random variables. Therefore,
throughout this section we shall study the sequence of sums

Si =
∑

j

Xij

obtained by summing the rows of a triangular array of random variables

X11, X12, . . . , X1n1

X21, X22, . . . . . . , X2n2

X31, X32, . . . . . . . . . , X3n3

...
...

...
...

It will be assumed throughout that the triangular arrays we consider satisfy 3 Triangu-
lar Array Conditions1 (here i ranges over {1, 2, . . .}, and j ranges over {1, 2, . . . , ni}):

1This is not standard terminology, but is used here as a simple referent for these conditions.
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1. For each i, the ni random variables Xi1, Xi2, . . . , Xini
in the ith row are mutually

independent.

2. E(Xij) = 0 for all i, j, and

3.
∑

j EX2
ij=1 for all i.

We have some remarks for these conditions:

• It is not assumed that random variables in each row are identically distributed.

• It is not assumed that different rows are independent. In fact, a common
application of triangular arrays is sums X1 + X2 + . . . + Xn obtained from a
sequence of independent random variables X1, X2, . . ..

• It will usually be the case that ni → ∞ as i → ∞. And according to the nature
of our problem, we should have the variables in each row tend to be smaller
and smaller as i increases. Both of these two conditions are implied by the
Lindeberg Condition which we will discuss below.

12.2 The Lindeberg Condition and Some Conse-

quences

Theorem 12.1 (Lindeberg’s Theorem) Suppose that in addition to the Triangu-
lar Array Conditions, the triangular array satisfies Lindeberg’s condition:

∀ε > 0, lim
i→∞

ni
∑

j=1

E[X2
ij1(|Xij| > ε)] = 0 (12.1)

Then Si
d−→ N (0, 1).

The Lindeberg condition makes precise the sense in which the random variables must
be smaller and smaller. It says that for arbitrarily small ε > 0, the contribution to
the total row variance from the terms with absolute value greater than ε becomes
negligible as you go down the rows. We see this as follows:

X2
ij ≤ ε2 + X2

ij1(|Xij| > ε)

EX2
ij ≤ ε2 + EX2

ij1(|Xij| > ε)

EX2
ij ≤ ε2 +

∑

j

EX2
ij1(|Xij| > ε)



Lecture 12: Setup for the Central Limit Theorem 12-3

This last inequality is true for all j, so we have:

max
j

EX2
ij ≤ ε2 +

∑

j

EX2
ij1(|Xij| > ε) (12.2)

The Lindeberg condition says that, as i → ∞, the summation on the RHS of (12.2)
tends to zero. Since (12.2) holds for all ε > 0, we get

lim
i→∞

max
j

EX2
ij = 0, (12.3)

which implies ni → ∞ as i → ∞, since we assume in Triangular Array Condition
that

∑

j EX2
ij = 1 for all i. Another consequence follows from (12.3) and Chebyshev’s

inequality: since we have

P(|Xij| > ε) ≤ E(X2
ij)

ε2
for all ε > 0,

taking the maximum over j and i → ∞, we get that Xij
P−→ 0, uniformly in j:

∀ε > 0, lim
i→∞

max
j

P(|Xij| > ε) = 0. (12.4)

An array with property (12.4) is said to be uniformly asymptotically negligible (UAN),
and there is a striking converse to Lindeberg’s Theorem:

Theorem 12.2 (Feller’s Theorem) If a triangular array satisfies the Triangular

Array Conditions and is UAN, then Si
d−→ N (0, 1) (if and) only if Lindeberg’s con-

dition (12.1) holds.

Proof: See Billingsley, Theorem 27.4, or Kallenberg, 5.12.

12.3 The Lyapounov Condition

A condition stronger (also often easier to consider and check) than Lindeberg’s is the
Lyapounov condition:

∃δ > 0 such that lim
i→∞

∑

j

E|Xij|2+δ = 0 (12.5)

Lemma 12.3 Lyapounov’s condition implies Lindeberg’s condition.
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Proof: Fix any ε, δ > 0. For any random variable |X| > ε, we have

X2 =
|X|2+δ

|X|δ ≤ |X|2+δ

εδ

Thus for any random variable X we have

E[X21(|X| > ε)] ≤ E|X|2+δ

εδ

Take X = Xij to be the elements of our triangular array, and take δ to be the value
from Lyapounov’s condition. Then we can sum over j on the RHS and take the limit
as i → ∞ on both sides to get the Lindeberg’s condition.

Theorem 12.4 (Lyapounov’s Theorem) If a triangular array satisfies the Trian-

gular Array Conditions and the Lyapounov condition (12.5), then Si
d−→ N (0, 1).

This follows from Lindeberg’s Theorem, but we prove it with δ = 1 below.

12.4 Preliminaries to the proof of Lyapounov’s The-

orem

We introduce two preliminaries to the proof. First:

Lemma 12.5 If X ∼ N (0, σ2), Y ∼ N (0, τ 2) are independent, then X + Y ∼
N (0, σ2 + τ 2).

Proof Sketch: Either

1. use the formula for the convolution of densities, or

2. use characteristic or moment generating functions, or

3. use the radial symmetry of the joint density function of i.i.d. N (0, σ2 + τ 2)
random variables U and V to argue that U sin θ+V cos θ ∼ N (0, σ2 +τ 2). Take

sin(θ) =
(

σ2

σ2+τ2

)1/2

.

To see how rotational invariance is unique to the normal distribution, see Kallen-
berg 13.2.

Second:
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Lemma 12.6 Si
d−→ Z if and only if limi→∞ Ef(Sx) = Ef(Z) for all f ∈ C3

b(R),
the set of functions from R to R with three bounded, continuous derivatives.

Proof: See Durrett, Theorem 2.2, and use that C3
b(R) is dense in Cb(R).

12.5 Proof of Lyapounov’s Theorem

This proof illustrates the general idea of the proof of Lindeberg’s theorem, and avoids
a few tricky details which we will deal with later.

Proof: With n fixed, let X1, X2, . . . , Xn be independent random variables, not nec-
essarily identically distributed. Suppose EXj = 0 and let σ2

j = E(X2
j ) < ∞. Then

for S =
∑n

j=1 Xj we have σ2 := VarS =
∑n

j=1 σ2
j . Note:

1. If ∀j, Xj ∼ N (0, σ2
j ), then S ∼ N (0, σ2) by Lemma 10.5.

2. Given independent random variables X1, X2, . . . , Xn with arbitrary distribu-
tions, we can always construct a new sequence Z1, Z2, . . . , Zn of normal random
variables with matching means and variances so that all of Zi and Xi are mu-
tually independent. This may involve changing the basic probability space, but
that does not matter because the distribution of S is determined by the joint
distribution of (X1, X2, . . . , Xn), which remains the same.

Let

S :=S0 := X1 + X2 + X3 + . . . + Xn,

S1 := Z1 + X2 + X3 + . . . + Xn,

S2 := Z1 + Z2 + X3 + . . . + Xn,

...
...

...

T :=Sn := Z1 + Z2 + Z3 + . . . + Zn,

We want to show that S is ”close” in distribution to T , i.e., that Ef(S) is close to
Ef(T ) for all f ∈ C3

b(R) with uniform bound K on f and its first three derivatives:
|f (i)|, i = 1, 2, 3.

By the triangle inequality,

|Ef(S) − Ef(T )| ≤
n

∑

j=1

|Ef(Sj) − Ef(Sj−1)|. (12.6)
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Let Rj be the sum of the common terms in Sj−1 and Sj. Then Sj−1 = Rj + Xj and
Sj = Rj + Zj. Note that by construction, Rj and Xj are independent, as are Rj and
Zj.

We need to compare Ef(Rj + Xj) and Ef(Rj + Zj). By the Taylor series expansion
up to the third term,

f(Rj + Xj) = f(Rj) + Xjf
(1)(Rj) +

X2
j

2!
f (2)(Rj) +

X3
j

3!
f (3)(αj),

f(Rj + Zj) = f(Rj) + Zjf
(1)(Rj) +

Z2
j

2!
f (2)(Rj) +

Z3
j

3!
f (3)(βj),

where αj is a point between Rj and Rj +Xj and βj is a point between Rj and Rj +Zj.

So, assuming that the X’s have a finite third moments, and noting that the Z’s do
as well(see below), we can take expectations in each of these identities and subtract
the resulting equations. Using independence and the fact that X and Z agree on
their first and second moments, we see that everything below the third order cancels.
Therefore,

|Ef(Sj) − Ef(Sj−1)| = |Ef(Rj + Xj) − Ef(Rj + Zj)| (12.7)

=

∣

∣

∣

∣

E
X3

j

3!
f (3)(αj) − E

Z3
j

3!
f (3)(βj)

∣

∣

∣

∣

(12.8)

≤ K

6
(E|Xj|3 + E|Zj|3). (12.9)

Let c be the third moment of a standard normal random variable. This is finite since,

c = 2

∫ ∞

0

x3 1√
2π

exp{−x2/2} dx = 2 · 2√
2π

< ∞

Therefore, E|Zj|3 = cσ3
j .

Jensen’s inequality implies that ‖X‖2 = (E|X|2) 1

2 ≤ (E|X|3) 1

3 = ‖X‖3, so σ3
j ≤

E|Xj|3, and therefore E|Zj|3 = cσ3
j ≤ cE|Xj|3, for each j.

Applying this to (12.9), we get

K

6
(E|Xj|3 + E|Zj|3) ≤

K(1 + c)

6
E|Xj|3.
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Now, from (12.6), we get

|Ef(S) − Ef(T )| ≤ K(c + 1)

6

n
∑

j=1

E|Xj|3, (12.10)

So far we have only considered one row of the array, but (12.10) is in fact true for
every row with K and c unchanged and T having the same distribution. For each i
we have,

|Ef(Si) − Ef(T )| ≤ K(c + 1)

6

ni
∑

j=1

E|Xij|3, (12.11)

Now, assuming Lyapounov’s condition holds for δ = 1, the RHS of (12.11) goes to
zero as i → ∞.

By Lemma 10.6, Si
d−→ N (0, 1) as i → ∞.

12.6 Proof of Lindeberg’s Central Limit Theorem

For Lyapounov’s version of the CLT, we looked at a triangular array {Xij} with
EXij = 0, EX2

ij = σ2
ij,

∑ni

j=1 σ2
ij = 1. Taking Si = Xi1 + Xi2 + · · ·+ Xini

, we saw that

we could prove Si
d−→ N (0, 1) assuming that limi→∞

∑ni

k=1 E|Xij|3 = 0.

This is a condition on third moments - we would like to see if a weaker condition will
suffice. We used third moments in a Taylor series expansion as follows:

f(R + X) = f(R) + Xf (1)(R) +
X2

2!
f (2)(R) +

X3

3!
f (3)(α), (12.12)

where α is a point between R and R + X.

Roughly, without the third moments assumption, the above expression is bad when
X is large – although the first two moments exist, we might have E|X|3 = ∞. The
idea now is to use the form in equation (12.12) when X is small and to make use of

f(R + X) = f(R) + Xf (1)(R) +
X2

2!
f (2)(γ) (12.13)

where γ is a point between R and R + X, when X is large.

Equating these expansions (12.12) and (12.13) for f(R + X), we get an alternative
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form for the remainder in (12.12):

X3

6
f (3)(α) =

X2

2
f (2)(γ) − X2

2
f (2)(R) (12.14)

=
X2

2
[f (2)(γ) − f (2)(R)]1(|X| > ε) (12.15)

+
X3

6
f (3)(α)1(|X| ≤ ε) (12.16)

for ε > 0. Thus, for f with |f (i)| ≤ K for i = 2, 3, we get

∣

∣

∣

∣

X3

6
f (3)(α)

∣

∣

∣

∣

≤ KX21(|X| > ε) +
K

6
|X|31(|X| ≤ ε) (12.17)

≤ KX21(|X| > ε) +
K

6
εX2, (12.18)

an alternative to the upper bound K
6
|X|3, which we used in (12.9).

Now we return to the setup of section 10.5 and use our new result to get more refined
bounds. From (12.6) and (12.8), we had

|Ef(S) − Ef(T )| ≤
nj

∑

j=1

∣

∣

∣

∣

E
X3

j

6
f (3)(αj) − E

Z3
j

6
f (3)(βj)

∣

∣

∣

∣

Using (12.6), the new bound for X3
j (12.18), the assumption that |f (3)| < K, and

since E|Zj|3 = cσ3
j , we get

|Ef(S) − Ef(T )| ≤
n

∑

j=1

[

KEX2
j 1(|Xj| > ε) +

K

6
εEX2

j

]

+

n
∑

j=1

K

6
cσ3

j (12.19)

= K
n

∑

j=1

EX2
j 1(|Xj| > ε) +

K

6
εσ2 +

cK

6

n
∑

j=1

σ3
j (12.20)

As i → ∞ (going down the rows of the triangular array), the first term goes to zero
by the Lindeberg condition. The last term goes to zero since

n(i)
∑

j=1

σ3
ij ≤

(

max
1≤j≤n(i)

σij

) n(i)
∑

j=1

σ2
ij = σ2 max

1≤j≤n(i)
σij,

which tends to zero by (12.3). Only K
6
εσ2 remains, and letting ε → 0 finishes the

argument.


